Analytics Engineer- Data Operations & Governance

Hong Kong, Hong Kong SAROn-sitefull-time

Job Description

Responsibilities:
  • Data Operations & Governance: Own the accuracy, reliability, and structure of product and user-event data through robust governance practices; Define and enforce standards for event tracking, data schemas, and documentation across teams; Conduct regular audits, validation checks, and coordinate instrumentation changes with engineering and product teams.
  • Data Pipeline Development & Maintenance: Build and maintain scalable, observable data pipelines using tools like dbt, Airflow, or similar frameworks; Monitor pipeline health, implement alerting systems, and resolve data issues with root cause analysis; Optimize pipeline performance and ensure high availability of core datasets for analytics and reporting.
  • Internal Tooling & Automation: Develop and maintain internal data tools, utilities, and dashboards using SQL, Python, and lightweight web technologies; Automate workflows to reduce manual reporting and improve operational efficiency for data stakeholders; Create reusable data models that support fast iteration and confident self-service analysis.
  • Competitive Intelligence & Data Collection: Operate and enhance data scraping workflows to collect structured information on competitors, pricing, and market trends; Ensure scraping systems are stable, maintainable, and compliant with data privacy and ethical standards.
  • Requirements:
  • Engineering Foundation: Strong SQL and working proficiency in Python or JavaScript for building and maintaining data infrastructure; Experience with modern data engineering tools (e.g., dbt, Airflow, Fivetran, Dagster); Familiarity with version control (Git), code modularization, and documentation practices.
  • Data Quality & Governance Experience: Track record designing or maintaining data governance practices in product analytics environments (e.g., Segment, GA4, Mixpanel); Comfortable building QA checks, anomaly detection, and data validation processes; Familiarity with data governance education and data governance related stakeholder management
  • Operational Mindset: Comfortable being on point for data issues, debugging pipeline failures, and ensuring continuity in reporting and dashboards; Ability to set up alerting/logging mechanisms to proactively detect and respond to data problems
  • Collaboration & Communication: Strong written and verbal communication skills to align with product, engineering, and business teams; Able to translate business questions into engineering requirements and technical work into stakeholder-friendly language.
  • Preferred Qualifications: Prior experience / knowledge on data science / machine learning; Prior experience on hands-on data engineering; Understanding of data operation & governance in analytics workflows; Experience supporting data for experimentation or A/B testing pipelines.
  • Salary

    $0 - $0 USD / year

    Job Stats

    PostedJuly 28, 2025
    Views4
    Applicants0

    You may interest